Does Water Metering Incentivizes Pro Conservation Preferences: A study from Lahore, Pakistan

Annus Azhar, Dr. Syed Hassan & Dr. Mumtaz Anwar

Annus Azhar is Assistant Research Fellow at Punjab Economic Research Institute (PERI)

Introduction

- Water demand due to population surge is rising especially in urban areas but its availability has greatly suffered because of inefficient regulation
- Efficient distribution of water in cities is a key component of its socio-economic development. However the quality and supply of government-provided water has decreased
- Private suppliers have gained tremendous importance in the water industry
- The fall in underground water tables has also taken place along with these changes in urban centers such as Lahore:
 - water table is depleting by more than 0.5 meter annually. (WWF 2014)
 - Due to disproportionate pumping, the water table depth in the central location of the city has gone below 40 m, and it is estimated that by 2025 the water table depth in most areas will drop under 70m

Trend of water table in Punjab at varying depth levels (in thousand hectares)

Source: Authors' own rendering using various issues of Punjab Development Statistics reports

- **Problem:** With the persistent energy crises, groundwater pumping from excessive depths will be a huge economic burden on Water & Sanitation Agency-Lahore (WASA) and other organizations.
- Pakistan's Commitment to Sustainable Development Goals (SDGs)

Ensure availability and sustainable management of water and sanitation for all

• **SDG 6.4** which states:

"By 2030, substantially increase water-use efficiency across all sectors and ensure sustainable withdrawals and supply of freshwater to address water scarcity..."

Solution: Therefore, there is a need to regulate water use and stop wastage of water. The goal of this study is to focus on effective demand management for water conservation by estimating difference in consumption as a consequence of metering volumetric use of water.

- Supplying water incurs cost that varies with the attitudes and consumption patterns. This
 state of affairs presents a practical example of (Jhele & Reny's, 2000) succinct definition of
 moral hazard whereby "a principal has a stake in the action taken by an agent, but the agent's
 action cannot be observed by the principal
- Abdel Khaleq & Dziegielewski, (2006) presents proposal for water demand policy of Jordan.
- Rationalize water use along with ground water management policy.
- How to manage water demand and recover cost?
 - Universal Metering
 - 20% reduction in water demand
- Panagopoulos (2014) and Garcia & Reynaud (2004) proposes increasing block prices
- Boyle et all. (2013) Metering thus can satisfy sustainable urban water management objectives

Giuliani A. (2015) & Ribeiro, R. et all (2015)

- water metering can reduce the need for labor cost for meter reading
- water loss prevention measures
- Utilities on the other hand can also use water consumption data and can get support for increasing operation efficiency

Data

- Data on water consumption taken from Water & Sanitation Agency (WASA) Lahore
- Panel Data ranges from 2000-2015
- Variables:

Account Number	Period Number	Consumer Billed	Water Charges	Ward Number	Area of House	
Town wise Distribution of water meters in Lahore						
Town Name		Number o	of Meters	Percentage of Meters		
Allama Iqbal		118145		18		
Gunj Buksh		131111		20		
Nishter (Marla)		76246		11		
Nishter (Ferrule)		25059		4		
Ravi		175686		26		
Shalamar		108471		16		
Aziz Bhatti		34671		5		
Total		669,	69,389 100			

Source: Authors' own rendering using data from WASA Lahore.

Utility Maximization Framework

Individuals

Case I

$$U = f(w, w')$$
$$C = p_w + p_{w'}w'$$
$$p_w = \overline{p}_w$$

Where by the costs are increasing in extraction $\left(\frac{\partial c_t}{\partial h_t} > 0\right)$ and decreasing in stock size $\left(\frac{\partial c_t}{\partial x_t} < 0\right)$

 $b_t(h_t, x_t) = b_t(h_t) - c_t(h_t, x_t)$

Net benefit function for WASA

Case II

$$U = f(w, w')$$

Cost = $p_w w + p_{w'} w'$

Where relevant price slab is determined by the quantity of water consumed

$$p_w = \begin{cases} p_{w1} & 0 < w < 5000 \\ p_{w2} & 5001 < w < 10000 \\ p_{w3} & w > 10000 \\ where \ p_{w1} < p_{w2} < p_{w3} \end{cases}$$

WASA

٠

Source: Author's own rendering using data from WASA-Lahore

	S.No	Plot size	Average Per Month
1.		1.0 to 5 Marla	10,000 Gallons
2.		5.1 to 10 Marla	15,000 Gallons
3.		10.1 to 20 Marla	20,000 Gallons
4.		20.1 to 02 Kanal	25,000 Gallons
5.		2.1 and above	30,000 Gallons

Source: Taken from WASA website

Methodology & Econometric specification:

$y_{it} = premetered_{treat} + postmetered(I)_{treat} + postmetered(II)_{treat} + premetered_{comp} + potmetered(I)_{comp} + postmetered(II)_{comp}$

Period	Premetered		Post metered-Tier I		Post metered-Tier II	
Description	Post-metered, prebilled	Post-metered, first bill	Post-metered, second bill	Post-metered, third bill	Post-metered, fourth bill	Post-metered, fifth bill
Length of time	Varied	60 days or one billing cycle	60 days or one billing cycle	60 days or one billing cycle	60 days or one billing cycle	60 days or one billing cycle

Definitions of evaluation periods

Flowchart defining treatment and comparison groups

Population of single-family (5 Marla Houses) residences to be metered	Residences divided into cohorts based on meter installation date and ward number	Cohorts chosen for analysis if premetered period < 3 months	Treatment Group
Population of single-family (5 Marla Houses) residences already	Households divided into cohorts to match treatment cohort date of meter	Households geocoded and matched with treatment cohort locations	Comparison Group
metered	installation and ward number		

Wichman, Taylor, & von Haefen, (2016) Need to contrrol for factors when looking at water usage

Spatial Mapping of treatment household of Allama Iqbal Town

Spatial Mapping of Control household of Allama Iqbal Town

Regression Results

Variables	Allama Iqbal	Ganj Baksh	Aziz Bhatti	Nishtar	Ravi	Shalamar	
Premetered_treatment	150.7513***	1,098.9673***	323.0714**	201.7594**	184.7756***	295.8405***	
	0	0	0.042	0.013	0	0.003	
Postmetered_tier I_treatment	102.5207***	1,073.5078***	252.2844	216.3280***	90.5312***	284.4311***	
	0	0	0.104	0.003	0.009	0.005	
Postmetered_tier II_treatment	109.6855***	1,073.8044***	227.7448	131.6305***	71.4385**	278.6320***	
	0	0	0.138	0.004	0.038	0.006	
Premetered_comparison	125.5286***	115.5542***	275.2788**	161.3499**	183.3362***	285.1629***	
	0	0	0.016	0.027	0	0.004	
Postmetered_tier I comparison	100.7870***	108.7681***	284.3015**	220.5213***	154.1494***	284.9359***	
	0	0	0.018	0.003	0	0.005	
Postmetered_tier II_comparison	122.4546***	110.7118***	306.5596**	165.2676***	184.7975***	286.1957***	
	0	0	0.011	0.003	0	0.005	
Mean_Temperature	4.9602***	2.5295**	2.5541*	-0.7102	2.6728**	2.2657***	
	0	0.014	0.075	0.791	0.024	0	
Number of Observations	1,536	483	216	174	102	2,298	
R ²	0.931	0.96	0.933	0.928	0.951	0.939	
Robust pvalues reported							
*** p<0.01. ** p<0.05. * p<0.1							

Overall Findings:

- Unmetered households in Allama Iqbal Town, Aziz Bhatti Town, Nishtar Town-Marla, Ravi Town and Shalamar Town used more water than metered households.
- In Allama Iqbal Town, unmetered households used an average of 20% (25 gpd) more water than similar metered households.
- In Aziz Bhatti Town, unmetered households used an average of 17% (48 gpd) more water than similar metered households.
- In Nishtar Town-Marla, unmetered households used an average of 25% (41 gpd) more water than did similar metered households.
- In Ganj Buksh Town, unmetered households used an average of 847% (983 gpd) more water than did similar metered households.
- In Ravi Town, unmetered households used an average of 1% (2 gpd) more water than did similar metered households.
- In Shalamar Town, unmetered households used an average of 25% (10 gpd) more water than did similar metered households.

Results Summary								
	Allama Iqbal	Aziz Bhatti	Ganj Baksh	Nishtar	Ravi	Shalamar		
Unmetered average monthly consumption per household-gpd	151	323	1099	202	185	295		
Metered average monthly consumption per household-gpd	126	275	116	161	183	285		
Difference between unmetered and metered households-%	20	17	847	25	1	25		
Short Term Meter Impacts- Reduction after four months of metering-%	15	25	2	23	35	4		
Longer term meter impacts- Reduction after six months of metering-%	26	39	2	37	63	6		

Using the data on water metering for the largest metropolitan city of Punjab our results shows that water metering results in **17 % reduction** in the use of residential water demand in the short run and this **reduction** in water demand rises to **29%** in the long run, these results are based on data from 2000-2015.

Conclusion and Policy Recommendation

- Water is precious and scarce, and therefore to ensure its conservation water metering may be done in urban areas.
- Water Meter installation impacts positively on residential water conservation efforts and should be helpful in planning a water utility's conservation program.
- Pakistan has committed to achieving SDGs. In order to achieve SDG-6 (Clean Water and Sanitation) water metering may play an important role.
- Government may use water metering to conserve water. Additional income generated as a result of volumetric use of water can be used to improve water infrastructure and to provide sustainable public investment for sustainable cities and communities (SDG-11).
- Better water infrastructure results in provision of clean drinking water and this can prevent from many water borne diseases, thus helping in achieving SDG-3 (Good health and wellbeing) also.
- Poor households may face problems of installing meters this can be countered by reimbursements of metering costs within stipulated time, such example was given by H. Chen, Z.F. Yang (2009) where costs were reimbursed within five years

Thank You!