COMPARISON OF FORECASTING PERFORMANCE OF DSGE AND VAR MODELS: THE CASE OF PAKISTAN

Shahzad Ahmad SBP and IBA, Karachi

Adnan Haider IBA, Karachi

PRESENTATION OUTLINE

- 1. Introduction and motivation
- 2. Literature Review
- 3. Models
- 4. Estimation of Models
- 5. Forecast Evaluation
- 6. Conclusion and Policy Implications

1. INTRODUCTION AND MOTIVATION

INTRODUCTION AND MOTIVATION

• Policy transmission lag and forward looking policy analysis

• Reliable forecasts of macro variables—an indispensible ingredient of forward looking policy analysis

So....

• Research related to macro forecasting has direct relevance for macro policy making.

DIFFERENT MODELS FOR FORECASTING AND POLICY ANALYSIS

- 1. Single equation models
 - Univariate (ARIMA)
 - Structural models
- 2. Multiple equations models
 - Macroeconometric models
 - Vector autoregressive (VAR) models
 - Dynamic Stochastic General Equilibrium (DSGE) models

<u>Weaknesses</u>

- Cannot capture all important dynamic relationships in data
- Endogeneity

- Lucas Critique
- Lucas Critique, Degrees of freedom, lack of consistent time series, lack economic theory.
- Poor data fit and forecasting power (Pagan 2003))

DILEMMA OF *INITIAL* DSGE/RBC MODELS

• Rich in terms of economic theory

- Micro foundations,
- Rational expectations,
- Policy rules (e.g. Taylor rule)
- Overcome Lucas Critique

.....but still poor in terms of data fitting and forecasting

- Tradeoff between theoretical rigor and data fit.
- Reason: Incomplete modeling of real and nominal frictions

BREAK THROUGH---NEW GENERATION OF DSGE MODELS

- New Generation of DSGE Models pioneered by Christiano et al. (2005)
- Nominal and real frictions to capture micro foundations of inertia in macro data
 - Price rigidity
 - Wage rigidity
 - Inflation indexation
 - Investment adjustment costs
 - Variable capacity utilization
 - Consumption habit formation
- Adolfson et al. (2005) "No tension between rigor and fit"

Forecasting accuracy vs. richness in economic theory Source: IMF Capacity Building Institute Slides

2. LITERATURE REVIEW

International literature Pakistan related literature

MAIN THEME OF LITERATURE REVIEW

• Out-of-sample forecasting power of the DSGE models against different competing models such as structural VAR, BVAR and judgmental forecasts.

INTERNATIONAL LITERATURE

• Smets and Wouter (2007)

Construct, estimate and compare forecasting power of a closed economy DSGE model against BVAR for USA economy.

Conclusion: DSGE forecasts are as good as BVAR forecasts.

• Edge et al. (2010)

Forecasting performance comparison of estimated DSGE models using real time data with judgmental forecasts provided by Federal Reserve Staff and BVAR models.

Conclusion: DSGE models provide competitive forecasts and they should be part of central bank's monetary policy analysis toolkit.

PAKISTAN RELATED LITERATURE

- Almost all studies employing DSGE framework have done so to analyze certain macro issues rather than forecasting and policy analysis.
- Haider and Khan (2008)
- Provide Bayesian estimation and interpretation of estimated parameters.
- Choudhary and Malik (2012)
- Analyze consequences of fiscal dominance for conduct of monetary policy in Pakistan.
- Ahmad et al. (2012)
- Analyze consequences of informal sector for conduct of monetary and fiscal policies.
- Choudhary and Pasha (2013)
- Analyze FDI shocks.
- Rehman et al. (2017)

Analyze effects of workers' remittances for macro outcomes.

CONTRIBUTION

• To our knowledge, there is not a single published paper that has evaluated forecasting performance of an estimated DSGE model for Pakistan data.

• This paper tries to fill this gap by estimation and then comparison of forecasting performance of a DSGE model.

3. MODELS

DSGE Model VARX Model BVAR Model BVARX Model

DSGE MODEL

- A variant of Adolfson et al. (2007)*
- Justification for using Adolfson et al. (2007):
 - 1. Nominal and real frictions
 - 2. Small open economy model and can analyze international trade flows and exchange rate
 - 3. Corner stone of many central banks' DSGE models (Wieland et al. (2012))
 - 4. Incorporates different types of taxes and can be used quite efficiently for fiscal policy analysis as well

*Adolfson, Malin, Stefan Laseen, Jesper Linde, and Mattias Villani. "Bayesian Estimation of an Open Economy DSGE Model with Incomplete Pass-Through." *Journal of International Economics* 72, no. 2 (2007): 481-511.

VARX MODEL

 Reduced form VAR: An economic variable depends upon its own and, other variables' lagged values
VARX: VAR with exogenous variables.

$$y_{t} = \sum_{l=1}^{L} A_{l} y_{t-1} + \sum_{m=0}^{M} B_{m} x_{t-m} + \varepsilon_{t}$$

- Variables to be included:
 - Endogenous:

$$y_t = [\Delta \text{GDP}_t \ \pi_t \ \Delta S_t \ i_t]'$$

• Exogenous:

$$x_t = [\alpha \quad \Delta \text{GDP}_t^{USA} \quad \pi_t^{USA} \quad i_t^{USA}]'$$

• Lags: AIC and SC both suggest 1 lag.

BAYESIAN VAR MODEL

- Over-parameterization of VAR models erodes forecasting power.
- Moreover, time series macro data could be either scarce or irrelevant (Litterman (1986))
- Solution to the problem: Bayesian estimation approach
- Application of prior knowledge in the form of parameters prior distributions
- Minnesota Priors for BVAR

4. ESTIMATION OF MODELS

Data

18

Estimation of DSGE Estimation of VARX Estimation of BVAR and BVARX

DATA

Sr. #	Data Series Description	Unit	Source						
1	Real GDP at constant factor cost	stMillion	Nadim Hamif at al. (2012)						
	FY 2000	PKR	Nadini Hanni et al. (2013)						
2	PKR/USD Exchange Rate	PKR/USD	SBP						
3	CPI	Index	SBP						
4	Pakistan Population	Million	IFS IMF						
5	Call Money Rate	Annual %	SBP						
6	USA Real GDP	Billion USI	DIFS IMF						
7	USA 3-Months T-Bill Rate	Annual %	IFS IMF						
8	USA CPI	Index	IFS IMF						

ESTIMATION OF DSGE MODEL

- Combination of Calibration and Bayesian MLE method.
- Calibration: use of micro studies, long term data and literature to parameterize the model coefficients.

BAYESIAN MLE

- Most of the variables used in DSGE model cannot be observed directly e.g. marginal cost, expected inflation and marginal rate of substitution and capital stock etc.
- Rational expectation solution of DSGE model is obtained where state variables are expressed as function of lagged states and shocks (state equation).
- Kalman Filter is used to relate these unobserved (latent) variables to observed variables (measurement equation).

STATE SPACE REPRESENTATION AND MEASUREMENT EQUATION

• State equation

 $X_t = RX_{t-1} + S\epsilon_t$

• Measurement equation

$$X_t^{obs} = \Gamma + VX_t + e_t$$

$$X_{t}^{obs} = \begin{bmatrix} \hat{y}_{t}^{obs} \\ \hat{\pi}_{t}^{obs} \\ \Delta S_{t}^{obs} \\ AS_{t}^{obs} \\ \hat{y}_{t}^{obs} \\ \hat{y}_{t}^{obs} \\ \pi_{t}^{USA,obs} \\ R_{t}^{USA,obs} \\ R_{t}^{USA,obs} \end{bmatrix} = \begin{bmatrix} 100(\mu_{z}^{4}-1) + 400(\hat{y}_{t}-\hat{y}_{t-1}) \\ 100(\pi^{4}-1) + 400\pi_{t} \\ 100(\mu_{z}^{*4}-1) + 400\hat{R}_{t} \\ 100(\mu_{z}^{*4}-1) + 400(\hat{y}_{t}^{USA}-\hat{y}_{t-1}^{USA}) \\ 100(\pi^{USA^{4}}-1) + 400\pi_{t}^{USA} \\ 100(\pi^{USA^{4}}-1) + 400\hat{R}_{t}^{USA} \end{bmatrix} = \Gamma + VX_{t}$$

 $\mathbf{22}$

SHOCKS IN DSGE MODEL

- 1. Total Factor Productivity Shock
- 2. Fiscal Spending Shock
- 3. Monetary Policy Shock (through interest rate)
- 4. Foreign Exchange Risk Premium Shock
- 5. Foreign Inflation Shock
- 6. Foreign Demand Shock
- 7. Foreign interest rate

5. FORECAST EVALUATION

Forecast Evaluation over Different Forecast Horizons

Forecast Evaluation over Time

RECURSIVE FORECASTING AND PARAMETERS UPDATION

- Our objective is to obtain expanding window recursive forecast
- We initially estimate models for sample period 1980Q4-2008Q4 and obtain forecast for 2009Q1-2010Q4
- Sequentially adding one observation to estimation data, we forecast 8-quarter 23 windows of out-of-sample forecasts.
- Last estimation sample: 1980Q4-2014Q2
- Last forecast window: 2014Q3-2016Q2

FORECAST ERRORS MATRIX

- 23 forecasting windows
- 8-quarter forecast horizon
- 4 models
- 4 variables

We have 16 (8x23) matrices of forecast errors.

Table C1: Forecast Errors for GDP Grow	th (VARX Model)
--	-----------------

	09Q1-	09Q2-	09Q3-	09Q4-	10Q1-	10Q2-	10Q3-	10Q4-	11Q1-	11Q2-	11Q3-	11Q4-	12Q1-	12Q2-	12Q3-	12Q4-	13Q1-	13Q2-	13Q3-	13Q4-	14Q1-	14Q2-	14Q3-
	10Q4	11Q1	11Q2	11Q3	11Q4	12Q1	12Q2	12Q3	12Q4	13Q1	13Q2	13Q3	13Q4	14Q1	14Q2	14Q3	14Q4	15Q1	15Q2	15Q3	15Q4	16Q1	16Q2
1 Qrtr	7.4	-13.4	-1.6	-0.2	-0.3	-1.2	-1.4	4.3	-2.8	-7.4	-1.9	-2.0	-2.0	0.7	-1.5	-2.5	-1.3	0.3	-0.8	-1.7	-0.6	0.0	-0.8
2 Qrtr	-15.6	4.0	1.7	0.4	-1.4	-2.4	5.3	-3.2	-4.8	0.6	-0.4	-2.0	2.1	-1.9	-1.7	0.0	0.4	-1.2	-0.6	-0.3	-0.7	-1.4	0.0
3 Qrtr	3.4	-0.3	0.4	-1.6	-2.0	4.7	-2.8	-3.7	0.0	-1.9	-2.0	1.5	-1.9	-1.5	-0.8	0.1	-1.3	-0.9	0.1	-0.9	-2.0	-0.5	0.4
4 Qrtr	-1.6	1.3	-1.0	-2.0	4.9	-3.5	-3.0	0.5	-1.5	-2.1	1.9	-2.3	-1.1	-0.9	-0.3	-1.1	-0.9	-0.4	-0.4	-2.0	-0.9	-0.1	-0.5
5 Qrtr	0.6	-1.3	-1.7	4.8	-3.2	-3.6	1.0	-0.8	-2.1	1.2	-2.1	-1.5	-0.7	-0.3	-1.6	-0.9	-0.4	-0.8	-1.7	-1.0	-0.5	-0.9	-1.0
6 Qrtr	-1.9	-1.6	5.2	-3.2	-3.4	0.5	-0.4	-1.5	1.3	-2.5	-1.3	-1.0	-0.1	-1.7	-1.3	-0.3	-0.8	-2.1	-0.7	-0.5	-1.1	-1.4	-0.9
7 Qrtr	-2.0	5.1	-3.0	-3.5	0.6	-0.8	-1.2	1.9	-2.5	-1.8	-0.9	-0.4	-1.5	-1.3	-0.7	-0.8	-2.1	-1.0	-0.3	-1.2	-1.6	-1.2	-0.4
8 Qrtr	4.8	-3.0	-3.2	0.6	-0.7	-1.6	2.2	-2.0	-1.7	-1.3	-0.3	-1.7	-1.2	-0.7	-1.1	-2.1	-1.0	-0.5	-1.0	-1.7	-1.4	-0.7	-1.1

FORECAST ERROR STATISTICS

• Average amount of over prediction or under prediction $\frac{f}{1}$

$$Bias = \frac{1}{f} \sum_{t=1}^{f} (FE_t)$$

• Standard deviation of forecast error

$$RMSE = \sqrt{\frac{1}{f} \sum_{t=1}^{f} (FE_t)^2}$$

• Both of these stats have been computed over:

- Different forecast horizons
- Different forecasting windows (over time)

FORECASTING PERFORMANCE OVER DIFFERENT FORECAST HORIZONS

November 2, 2017 AERC, Karachi

FORECASTING PERFORMANCE OVER DIFFERENT FORECAST HORIZONS

29

AERC, Karachi

FORECASTING PERFORMANCE OVER DIFFERENT TIME PERIODS

30

AERC, Karachi

FORECASTING PERFORMANCE OVER DIFFERENT TIME PERIODS

November 2, 2017

AERC, Karachi

6. CONCLUSION AND POLICY IMPLICATIONS

Conclusion Policy Implications

CONCLUSION

- In general, VAR models provide better forecasts than DSGE model.
- For GDP growth, call money rate and inflation, forecasting performance of DSGE model was quite close
- For exchange rate, DSGE forecasts provide relatively larger positive bias and RMSEs.
- Positive bias in exchange rate indicates overvalued local currency.

POLICY IMPLICATIONS

• Better forecast, better forward looking policy.

- Forecast errors can be used to compute deviations from equilibrium values e.g.
 - Exchange rate forecast error: ER misalignment
 - Interest rate forecast error: Interest rate gap
 - GDP forecast error: Output gap
- Estimated models could be used for a wide range of policy experiments by utilizing IRF's, variance decompositions and shock decompositions.

LIFE OF A "PROFESSIONAL FORECASTER"...

Source: IMF Capacity Development Institute

THANK YOU!

REFERENCES

- Adolfson, Malin, Stefan Laseen, Jesper Linde, and Mattias Villani. "Bayesian Estimation of an Open Economy Dsge Model with Incomplete Pass-Through." *Journal of International Economics* 72, no. 2 (2007): 481-511.
- Adolfson, Malin, Jesper Lindé, and Mattias Villani. "Forecasting performance of an open economy DSGE model." *Econometric Reviews* 26, no. 2-4 (2007): 289-328.
- Ahmad, Shahzad, Waqas Ahmed, Farooq Pasha, Sajawal Khan, and Muhammad Rehman. "Pakistan Economy DSGE Model with Informality." *State Bank of Pakistan Working Paper Series* (2012).
- Ahmad, Shahzad, and Farooq Pasha. "A Pragmatic Model for Monetary Policy Analysis I: The Case of Pakistan." *SBP Research Bulletin* 11 (2015): 1-42.
- Berg, Andrew, Philippe Karam, and Douglas Laxton. "A Practical Model-Based Approach to Monetary Policy Analysis: Overview." International Monetary Fund, (2006).
- Choudhary, M. Ali, and Pasha Farooq. "The RBC View of Pakistan: A Declaration of Stylized Facts and Essential Models." (2013), State Bank of Pakistan Working Paper Series.

- Choudhri, Ehsan U., and Hamza Malik. "Monetary Policy in Pakistan: A Dynamic Stochastic General Equilibrium Analysis." *International Growth Centre Working Paper Series* (2012).
- Christiano, Lawrence J., Martin Eichenbaum, and Charles L. Evans. "Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy." *Journal of Political Economy* 113, no. 1 (2005): 1-45.
- Christoffel, Kai, Günter Coenen, and Anders Warne. "The New Area-Wide Model of the Euro Area: A Micro-Founded Open-Economy Model for Forecasting and Policy Analysis." European Central Bank, (2008).
- Edge, Rochelle M., and Refet S. Gurkaynak. "How useful are estimated DSGE model forecasts for central bankers?." (2010).

0

- Edge, Rochelle M., Michael T. Kiley, and Jean-Philippe Laforte. "A comparison of forecast performance between federal reserve staff forecasts, simple reduced-form models, and a DSGE model." *Journal of Applied Econometrics* 25, no. 4 (2010): 720-754.
- Haider, Adnan, and Safdar Ullah Khan. "A Small Open Economy Dsge Model for Pakistan." *The Pakistan Development Review* 47, no. 4 (2008): 963-1008.

- Hanif, M. Nadeem, Javed Iqbal, and Jahanzeb Malik. "Quarterization of National Income Accounts of Pakistan." *State Bank of Pakistan Research Bulletin* 9, no. 1 (2013): 1-61.
- Litterman, Robert B. "Forecasting with Bayesian Vector Autoregressions: Five Years of Experience." Journal of Business & Economic Statistics 4, no. 1 (1986): 25-38.
- Rehman, Muhammad, Sajawal Khan, and Zafar Hayat. A Small Open Economy DSGE Model with Workers' Remittances. No. 84. State Bank of Pakistan, Research Department, 2017.
- Smets, Frank, and Raf Wouters. "An Estimated Dynamic Stochastic General Equilibrium Model of the Euro Area." *Journal of the European Economic Association* 1, no. 5 (2003): 1123-75.